Given that RH= 2.18 x 10⁻¹⁸J, 1 nm = 1 x 10⁻⁹m, h = 6.63 x 10⁻³⁴J·s, and c = 3.00 x 10⁸m/s:
Calculate the wavelength, innanometers, of the light emitted by a hydrogen atom during a transition of its electron from the n = 7 to the n = 3 principal energy level.

Respuesta :

Answer:

The wavelength the light emitted by a hydrogen atom during a transition is 1006 nm.

Explanation:

By using Rydberg's Equation we cab determine the wavelength of the light:

[tex]\Delta E=R_H\times Z^2\left(\frac{1}{n_i^2}-\frac{1}{n_f^2} \right )[/tex]

Where,

[tex]\Delta E[/tex] = Energy difference

[tex]R_H[/tex] = Rydberg's Constant

[tex]n_f[/tex] = Final energy level

[tex]n_i[/tex]= Initial energy level

We have : [tex]n_i=7,n_f=3[/tex] , Z = 1

[tex]R_H=2.18\times 10^{-18} J[/tex]

[tex]\Delta E=2.18\times 10^{-18} J\times 1^2\left(\frac{1}{7^2}-\frac{1}{3^2} \right )[/tex]

[tex]\Delta E=1.9773\times 10^{-19} J[/tex]

Now by using Plank's equation we can determine the wavelength of the light emitted.

[tex]E=\frac{hc}{\lambda }[/tex]

E = Energy of the emitted light

h = Planck's constant = [tex]6.63\times 10^{-34} Js[/tex]

c = speed of light = [tex]3.00\times 0^8 m/s[/tex]

For the given transition the energy of the light = E

[tex]E =1.9773\times 10^{-19} J[/tex]

[tex]\lambda=\frac{hc}{E}=\frac{6.63\times 10^{-34} Js\times 3.00\times 0^8 m/s}{1.9773\times 10^{-19} J}[/tex]

[tex]\lambda =1.006\times 10^{-6} m =1.006\times 10^{-6}\times 10^9=1006 nm[/tex]

The wavelength the light emitted by a hydrogen atom during a transition is 1006 nm.

ACCESS MORE