Answer:
A. [tex]E = 1.512\times 10^{5}\ V[/tex]
B. 151.2 V
C. [tex]E = 1.512\times 10^{5}\ V[/tex]
D. V = 302.4 V
Solution:
As per the question:
Area of the plates of the parallel plate capacitors, A = [tex]2.30\times 2.30 = 5.29\ cm^{2} = 5.29\times 10^{- 4}\ m^{2}[/tex]
Charge on the plates of the capacitor, [tex]Q_{c} = \pm 0.708\ nC = \pm 0.708\times 10^{- 9} \C[/tex]
Now,
(A) To calculate the electric field strength, E when the separation distance, d = 1.00 mm = [tex]10^{- 3}\ m[/tex]:
[tex]E = \frac{Q}{\epsilon_{o}A}[/tex]
[tex]E = \frac{0.708\times 10^{- 9}}{8.85\times 10^{- 12}\times 5.29\times 10^{- 4}} = 1.512\times 10^{5}\ N/C[/tex]
(B) To calculate potential difference between the plates:
[tex]V = Ed = 1.512\times 10^{5}\times 10^{- 3} = 151.2V[/tex]
(C) Electric field strength when spacing is 2 mm, i.e., [tex]2\times 10^{- 3}\ m[/tex]:
[tex]E = \frac{Q}{\epsilon_{o}A}[/tex]
Since, the above expression of the electric field shows that it does not depend on the separation distance between the plates thus it will remain same, i.e., [tex]1.512\times 10^{5}\ V[/tex]
(D) Potential difference across the capacitor when d = [tex]2\times 10^{- 3}\ m[/tex]:
V = Ed = [tex]1.512\times 10^{5}\times 2\times 10^{- 3} =302.4\ V[/tex]