Answer:
(a) [tex]v=11.087\,m.s^{-1}[/tex] & [tex]F_T=1.176\,N[/tex]
(b) [tex]F_T=0.8316\,N[/tex]
(c) [tex]v=11.087\,m.s^{-1}[/tex] & [tex]F_T=1.176\,N[/tex]
Explanation:
Given:
mass of rock, [tex]m=0.12kg[/tex]
length of string, [tex]l=0.8\,m[/tex]
Max angle of swing from the vertical, θ=45 degree
Height of rise of rock from the mean position:
[tex]cos\theta=\frac{h}{l}[/tex]
[tex]cos45^{\circ}=\frac{h}{0.8}[/tex]
[tex]h=\frac{0.8}{\sqrt{2} } \,m[/tex]
As we know that at the highest point pendulum has highest potential energy and zero kinetic energy.
So,
[tex]PE=m.g.h[/tex]
[tex]PE=0.12\times 9.8\times \frac{0.8}{\sqrt{2} }\,J[/tex]
At the vertical position of the string we have maximum kinetic energy and zero potential energy:
So,
KE=PE
[tex]\frac{1}{2} \times 0.12 \times v^2=0.12\times 9.8\times \frac{0.8}{\sqrt{2} }[/tex]
[tex]v=11.087\,m.s^{-1}[/tex]
In vertical position the tension is maximum:
[tex]F_T=m.g cos\theta[/tex]
where θ=angle of string from the vertical.
[tex]F_T=9.8\times0.12[/tex]
[tex]F_T=1.176\,N[/tex]
(b)
As already explained in part (a) the Kinetic Energy is zero so velocity is zero at extreme position.
Now, tension at this point
[tex]F_T=m.g cos\theta[/tex]
[tex]F_T=9.8\times0.12 cos45^{\circ}[/tex]
[tex]F_T=0.8316\,N[/tex]
(c)
The same question has been answered in part (a).