Answer:
Option a - Discontinuity at (−4, −3), zero at (−1, 0)
Step-by-step explanation:
Given : Function [tex]\dfrac{x^2+5x+4}{x+4}[/tex]
To find : What are the discontinuity and zero of the function ?
Solution :
To find the discontinuity for our given function [tex]\dfrac{x^2+5x+4}{x+4}[/tex]
We will equate denominator to 0,
[tex]x+4=0[/tex]
[tex]x=-4[/tex]
Now we simplify the expression,
[tex]f(x)=\dfrac{x^2+5x+4}{x+4}[/tex]
[tex]f(x)=\dfrac{(x+4)(x+1)}{(x+4)}[/tex]
[tex]f(x)=x+1[/tex]
Since the denominator term is cancelled out, so our give function has a removable discontinuity.
Now, we will find value of y by substituting x=-4 in function [tex]f(x)=x+1[/tex].
[tex]f(-4)=-4+1[/tex]
[tex]f(-4)=-3[/tex]
The discontinuity of given function is at point (-4,-3) .
For zeros of the function put function equate to zero.
[tex]x+1=0[/tex]
[tex]x=-1[/tex]
The zero is at (-1,0).
Therefore, Option a is correct.