[tex]\dfrac{3}{14}[/tex]
Step-by-step explanation:
Given,number of red markers=[tex]n_{r}[/tex]=4
number of green markers=[tex]n_{g}[/tex]=8
number of blue markers=[tex]n_{b}[/tex]=3
[tex]probability=\frac{\text{number of favourable outcomes}}{\text{total number of outcomes} }[/tex]
Let [tex]p_{1}[/tex] be the probability of getting a red marker=[tex]\frac{\text{number of red markers}}{\text{total number of markers}}[/tex]
So,[tex]p_{1}[/tex]=[tex]\frac{4}{8+4+3}=\frac{4}{15}[/tex]
Let [tex]p_{2}[/tex] be the probability of getting a blue marker after getting a red marker.
After removing a red marker,[tex]n_{r}[/tex] becomes 3 and [tex]n_{g},n_{b}[/tex] remain same.
[tex]p_{2}=[/tex][tex]\frac{3}{8+4+3}=\frac{3}{14}[/tex]
Probability for getting a red marker followed by getting a blue marker is [tex]p_{1}\times p_{2}=\frac{4}{15}\times \frac{3}{14}=\frac{2}{35}[/tex]