Respuesta :
Answer:
Part a)
[tex]T_1 = 53.13 N[/tex]
[tex]T_2 = 26.6 N[/tex]
Part b)
[tex]T_1 = 70.1 N[/tex]
[tex]T_2 = 35 N[/tex]
Part c)
[tex]a = 4.62 m/s^2[/tex]
Explanation:
Part a)
As we know that the elevator is accelerating downwards
so we have force equation for sphere A given as
[tex]m_ag + T_2 - T_1 = m_a a[/tex]
also for second sphere we have
[tex]m_bg - T_2 = m_b a[/tex]
from above equations we have
[tex](m_a + m_b)g - T_1 = (m_a + m_b) a[/tex]
[tex](2m)g - T_1 = (2m)a[/tex]
so we have
[tex]T_1 = (2m)(g - a)[/tex]
[tex]T_1 = (2\times 3.14)(9.81 - 1.35)[/tex]
[tex]T_1 = 53.13 N[/tex]
Now from other equation we have
[tex]T_2 = m_2(g - a)[/tex]
[tex]T_2 = 3.14(9.81 - 1.35)[/tex]
[tex]T_2 = 26.6 N[/tex]
Part b)
Now the elevator is accelerating upwards
so we have force equation for sphere A given as
[tex]T_1 - (m_ag + T_2) = m_a a[/tex]
also for second sphere we have
[tex]T_2 - m_b g = m_b a[/tex]
from above equations we have
[tex]T_1 - (m_a + m_b)g = (m_a + m_b) a[/tex]
[tex]T_1 - 2mg = (2m)a[/tex]
so we have
[tex]T_1 = (2m)(g + a)[/tex]
[tex]T_1 = (2\times 3.14)(9.81 + 1.35)[/tex]
[tex]T_1 = 70.1 N[/tex]
Now from other equation we have
[tex]T_2 = m_2(g + a)[/tex]
[tex]T_2 = 3.14(9.81 + 1.35)[/tex]
[tex]T_2 = 35 N[/tex]
Part c)
Now we know that maximum possible tension in the string is
T = 92.6 N
so we have
[tex]T_1 = (2m)(g + a)[/tex]
[tex]92.6 = 2(3.14)(9.81 + a)[/tex]
[tex]a = 4.62 m/s^2[/tex]