Answer:
The length of arc of circle with interior angle 60° is 18 meter
Step-by-step explanation:
Given as :
The circumference of circle = C = 108 meters
The interior angle at center of circle = 60°
Let The length of arc = L
So ,
Length of arc = L = [tex]\frac{\Pi \times radius\times \Theta }{180^{\circ}}[/tex]
∵ circumference of circle = [tex]2\times \Pi \times radius[/tex]
Or, 108 = [tex]2\times \Pi \times radius[/tex]
∴ r = [tex]\frac{108}{2\pi }[/tex]
So, Length of arc = [tex](\frac{\Pi \times \Theta }{180}) \times (\frac{108}{2\times \Pi })[/tex]
Or, L = [tex](\frac{\Pi \times \60 }{180}) \times (\frac{108}{2\times \Pi })[/tex]
Or, L = [tex]\frac{36}{2}[/tex] = 18 m
Hence The length of arc of circle with interior angle 60° is 18 meter Answer