Answer: The volume when the pressure and temperature has changed is [tex]1.6\times 10^2mL[/tex]
Explanation:
To calculate the volume when temperature and pressure has changed, we use the equation given by combined gas law.
The equation follows:
[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]
where,
[tex]P_1,V_1\text{ and }T_1[/tex] are the initial pressure, volume and temperature of the gas
[tex]P_2,V_2\text{ and }T_2[/tex] are the final pressure, volume and temperature of the gas
Let us assume:
[tex]P_1=1.20atm\\V_1=795mL\\T_1=116^oC=[116+273]K=389K\\P_2=0.55atm\\V_2=?mL\\T_2=75^oC=[75+273]K=348K[/tex]
Putting values in above equation, we get:
[tex]\frac{1.20atm\times 795mL}{389K}=\frac{0.55atm\times V_2}{348K}\\\\V_2=\frac{1.20\times 795\times 348}{0.55\times 389}=1.6\times 10^3mL[/tex]
Hence, the volume when the pressure and temperature has changed is [tex]1.6\times 10^2mL[/tex]