Respuesta :
Answer:
Part a)
[tex]I = 1879.7 kg m^2[/tex]
Part b)
[tex]\alpha = 0.70 rad/s^2[/tex]
Part c)
[tex]I = 153.8 kg m^2[/tex]
Part 4)
angular acceleration will be ZERO
Part 5)
[tex]I = 345.6 kg m^2[/tex]
Explanation:
Part a)
Moment of inertia of the system about left end of the rod is given as
[tex]I = \frac{m_r L^2}{3} + (\frac{2}{5} m_s R^2 + m_s(R + L)^2)[/tex]
So we have
[tex]I = \frac{m_r(4R)^2}{3} + (\frac{2}{5}(5m_r) R^2 + (5m_r)(R + 4R)^2)[/tex]
[tex]I = \frac{16}{3}m_r R^2 + (2m_r R^2 + 125 m_rR^2)[/tex]
[tex]I = (\frac{16}{3} + 127)m_r R^2[/tex]
[tex]I = (\frac{16}{3} + 127)(6.85)(1.44)^2[/tex]
[tex]I = 1879.7 kg m^2[/tex]
Part b)
If force is applied to the mid point of the rod
so the torque on the rod is given as
[tex]\tau = F\frac{L}{2}[/tex]
[tex]\tau = 460(2R)[/tex]
[tex]\tau = 460 \times 2 \times 1.44[/tex]
[tex]\tau = 1324.8 Nm[/tex]
now angular acceleration is given as
[tex]\alpha = \frac{\tau}{I}[/tex]
[tex]\alpha = \frac{1324.8}{1879.7}[/tex]
[tex]\alpha = 0.70 rad/s^2[/tex]
Part c)
position of center of mass of rod and sphere is given from the center of the sphere as
[tex]x = \frac{m_r}{m_r + m_s}(\frac{L}{2} + R)[/tex]
[tex]x = \frac{m_r}{6 m_r}(3R) = \frac{R}{2}[/tex]
so moment of inertia about this position is given as
[tex]I = \frac{m_r L^2}{12} + m_r(\frac{L}{2} + \frac{R}{2})^2 + (\frac{2}{5} m_s R^2 + m_s(\frac{R}{2})^2)[/tex]
so we have
[tex]I = \frac{m_r (16R^2)}{12} + m_r(\frac{5R}{2})^2 + \frac{2}{5}(5m_r)R^2 + (5m_r)(\frac{R^2}{4})[/tex]
[tex]I = m_r R^2(\frac{16}{12} + \frac{25}{4} + 2 + \frac{5}{4})[/tex]
[tex]I = 6.85(1.44)^2\times 10.83[/tex]
[tex]I = 153.8 kg m^2[/tex]
Part 4)
If force is applied parallel to the length of rod
then we have
[tex]\tau = \vec r \times \vec F[/tex]
[tex]\tau = 0[/tex]
so angular acceleration will be ZERO
Part 5)
moment of inertia about right edge of the sphere is given as
[tex]I = \frac{m_r L^2}{12} + m_r(\frac{L}{2} + 2R)^2 + (\frac{2}{5} m_s R^2 + m_s(R)^2)[/tex]
so we have
[tex]I = \frac{m_r (16R^2)}{12} + m_r(4R)^2 + \frac{2}{5}(5m_r)R^2 + (5m_r)(R^2)[/tex]
[tex]I = m_r R^2(\frac{16}{12} + 16 + 2 + 5)[/tex]
[tex]I = 6.85(1.44)^2\times 24.33[/tex]
[tex]I = 345.6 kg m^2[/tex]