Answer:
B) Length of PR is 21 unit.
Step-by-step explanation:
In Δ PQR, PQ = 10 unit , and QR = 17 unit (given)
and let, QT⊥ PR.
Now, QT = 8 unit (given)
So, Δ PQT is a right angled triangle right-angled at T .
So. PT = [tex]\sqrt {((PQ)^{2} - (QT)^{2})}[/tex]
= [tex]\sqrt {10^{2} - 8^{2}}[/tex]
=[tex] \sqrt{36}[/tex] = 6 unit
Similarly,
Δ RQT is a right angled triangle right-angled at T .
So. RT = [tex]\sqrt {((RQ)^{2} - (QT)^{2})}[/tex]
= [tex]\sqrt {17^{2} - 8^{2}}[/tex]
=[tex] \sqrt{225}[/tex] = 15 unit
So, PR = PT + TR = (15 + 6) unit = 21 unit