Formula for Margin of error :
[tex]E= z_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}[/tex]
, where n= sample size
[tex]\sigma[/tex]= sample standard deviation
[tex]z_{\alpha/2}[/tex] = two-tailed z-value for confidence level of ([tex]1-\alpha[/tex]).
Given : tex]\sigma=50[/tex]
n= 100
a) Confidence level = 95%
Critical z-value for 95% confidence = [tex]z_{\alpha/2}=1.96[/tex]. (Using z-value table)
Then , Margin of error : [tex]E= (1.96)\dfrac{50}{\sqrt{100}}[/tex]
E=9.8
Hence, Margin of error for 95%= 9.8
b) Confidence level = 90%
Critical z-value for 90% confidence = [tex]z_{\alpha/2}=1.645[/tex].(Using z-value table)
Then , Margin of error : [tex]E= (1.645)\dfrac{50}{\sqrt{100}}[/tex]
E=8.225
Hence, Margin of error for 90%= 8.225
c) Confidence level = 99%
Critical z-value for 99% confidence = [tex]z_{\alpha/2}=2.576[/tex].(Using z-value table)
Then , Margin of error : [tex]E= (2.576)\dfrac{50}{\sqrt{100}}[/tex]
E=12.88
Hence, Margin of error for 99%= 12.88