Answer:
Part a)
[tex]v = 3950.5 m/s[/tex]
Part b)
[tex]W = -4.56 \times 10^9 J[/tex]
Part c)
[tex]F = 1.43 \times 10^9 N[/tex]
Part d)
[tex]Energy = 4.56 \times 10^9 J[/tex]
Explanation:
Part a)
As we know that total mechanical energy of the meteorite must be conserved
so we will have
[tex]-\frac{GMm}{R+ h} + \frac{1}{2}mv_i^2 = - \frac{GMm}{R} + \frac{1}{2]mv_f^2[/tex]
[tex]-\frac{(6.67 \times 10^{-11})(5.98 \times 10^{24})}{6.37 \times 10^6 + 9\times 10^5} + \frac{1}{2}(80^2) = -\frac{(6.67 \times 10^{-11})(5.98 \times 10^{24})}{6.37 \times 10^6} + \frac{1}{2}v^2[/tex]
[tex]-5.48 \times 10^7 + 3200 = -6.26 \times 10^7 + \frac{v^2}{2}[/tex]
[tex]v = 3950.5 m/s[/tex]
Part b)
Work done by sand to stop it
[tex]W = \Delta K[/tex]
[tex]W = -\frac{1}{2}mv^2[/tex]
[tex]W = -\frac{1}{2}(585)(3950.5^2)[/tex]
[tex]W = -4.56 \times 10^9 J[/tex]
Part c)
As we know that
W = F. d
so we have
[tex]-4.56 \times 10^9 = F \times (3.20)[/tex]
[tex]F = 1.43 \times 10^9 N[/tex]
Part d)
Work done = thermal energy
[tex]Energy = 4.56 \times 10^9 J[/tex]