Which equation describes this line?
(1.13)
(-2.4)
O A. y-1 = 3(x - 13)
O B. y= 2 = 3(x-4)
O C. y - 4 = 3 (x - 2)
O D . y - 4 = 3(x + 2)

Respuesta :

Answer:

The equation of line with given points is  y - 4 = 3 ( x + 2 ) .

Step-by-step explanation:

Given as :

The points of line are ( 1 , 13 )   and    ( - 2 , 4 )

The point slope intercept equation of line is

y - [tex]y_1[/tex] = m ( x -  [tex]x_1[/tex] )

Where m is the slope of line

So , Slope , m = [tex]\frac{y_2 - y_1}{x_2 - x_1}[/tex]

Or, m =  [tex]\frac{4 - 13}{ - 2 - 1}[/tex]

Or, m =  [tex]\frac{ - 9}{ - 3}[/tex]

∴    m = 3

Now The equation of line is

y - [tex]y_1[/tex] = m ( x -  [tex]x_1[/tex] )

Or. y - 13 = 3 ( x -  1 )

Or, y - 13 = 3 x - 3

Or, y = 3 x - 3 + 13

∴   y = 3 x + 10

I.e y - 4 = 3 x + 6

Or, y - 4 = 3 ( x + 2 )

Hence The equation of line with given points is  y - 4 = 3 ( x + 2 ) . Answer

y - 4 = 3 ( x + 2 )

Step-by-step explanation:

a p e x

ACCESS MORE