Answer:
a. [tex]v_{f1}=-12.28m/s[/tex]
b. [tex]K_{Einitial} = 48.672J[/tex], [tex]K_{E(final)} = 13.75 J[/tex]
Explanation:
Let the velocity of the ball after collision is v m/s, By the law of momentum conservation:
[tex]p_i=p_f[/tex]
[tex]m_1*u_1+m_2*u_2 = m_1*v_1 + m_2*v_2[/tex]
[tex]0.144kg*26m/s + 5.25kg*0 = 0.144kg*v_{f1} + 5.25kg*1.05m/s[/tex]
Solve to vf1
[tex]v_{f1}=\frac{0.144kg*26m/s-5.25kg*1.05m/s}{0.144kg}[/tex]
[tex]v_{f1}=-12.28m/s[/tex]
(b)
[tex]K_E(initial) = 1/2*m_1u_1^2[/tex]
[tex]K_E = 1/2*0.144kg*(26m/s)^2[/tex]
[tex]K_{Einitial} = 48.672J[/tex]
[tex]K_{E(final)} = 1/2*m_1v_1^2 + 1/2*m_2v_2^2[/tex]
[tex]K_{E(final)} = 1/2*0.144kg*(12.28m/s)^2 + 1/2*5.25 x (1.05m/s)^2[/tex]
[tex]K_{E(final)} = 13.75 J[/tex]