Answer:
m∠CBD = 98°.
Step-by-step explanation:
Given information: ∠ABD is a straight angle, m∠ABC=2x+50° and m∠CBD=6x+2°.
∠ABD is a straight angle, it means m∠ABD is 180°.
[tex]\angle ABD=180^{\circ}[/tex]
From the below graph we can conclude that
[tex]\angle ABC+ \angle CBD=\angle ABD[/tex]
[tex](2x+50)+(6x+2)=180[/tex]
Combine like terms.
[tex](2x+6x)+(50+2)=180[/tex]
[tex]8x+52=180[/tex]
[tex]8x=180-52[/tex]
[tex]8x=128[/tex]
Divide both sides by 8.
[tex]x=16[/tex]
The value of x is 16.
We need to find the m∠CBD.
[tex]\angle CBD=6x+2[/tex]
[tex]\angle CBD=98[/tex]
Therefore, the value of m∠CBD is 98°.