m∠ABDm, angle, A, B, D is a straight angle.

\qquad m \angle ABC = 2x + 50^\circm∠ABC=2x+50



m, angle, A, B, C, equals, 2, x, plus, 50, degrees

\qquad m \angle CBD = 6x + 2^\circm∠CBD=6x+2



m, angle, C, B, D, equals, 6, x, plus, 2, degrees

Find m\angle CBDm∠CBDm, angle, C, B, D:

Respuesta :

Answer:

m∠CBD = 98°.

Step-by-step explanation:

Given information: ∠ABD is a straight angle, m∠ABC=2x+50° and m∠CBD=6x+2°.

∠ABD is a straight angle, it means m∠ABD is 180°.

[tex]\angle ABD=180^{\circ}[/tex]

From the below graph we can conclude that

[tex]\angle ABC+ \angle CBD=\angle ABD[/tex]

[tex](2x+50)+(6x+2)=180[/tex]

Combine like terms.

[tex](2x+6x)+(50+2)=180[/tex]

[tex]8x+52=180[/tex]

[tex]8x=180-52[/tex]

[tex]8x=128[/tex]

Divide both sides by 8.

[tex]x=16[/tex]

The value of x is 16.

We need to find the m∠CBD.

[tex]\angle CBD=6x+2[/tex]

[tex]\angle CBD=98[/tex]

Therefore, the value of m∠CBD is 98°.

Ver imagen erinna
ACCESS MORE