Answer :
(a) The heat released by the metal is -312.48 J
(b) The specific heat of the metal is [tex]0.0944J/g^oC[/tex]
Explanation :
For part A :
Heat released by the metal = Heat absorbed by the calorimeter + Heat absorbed by the water
[tex]q=[q_1+q_2][/tex]
[tex]q=[c_1\times \Delta T+m_2\times c_2\times \Delta T][/tex]
where,
q = heat released by the metal
[tex]q_1[/tex] = heat absorbed by the calorimeter
[tex]q_2[/tex] = heat absorbed by the water
[tex]c_1[/tex] = specific heat of calorimeter = [tex]51.5J/^oC[/tex]
[tex]c_2[/tex] = specific heat of water = [tex]4.184J/g^oC[/tex]
[tex]m_2[/tex] = mass of water = 50.0 g
[tex]\Delta T[/tex] = change in temperature = [tex](T_{final}-T_{initial})=23.2-22.0=1.2^oC[/tex]
Now put all the given values in the above formula, we get:
[tex]q=[(51.5J/^oC\times 1.2^oC)+(50.0g\times 4.184J/g^oC\times 1.2^oC)][/tex]
[tex]q=312.48J[/tex]
Thus, the heat released by the metal is -312.48 J
For part B :
[tex]q=m\times c\times \Delta T[/tex]
q = heat released by the metal = -312.48 J
m = mass of metal = 43.1 g
c = specific heat of metal = ?
[tex]\Delta T[/tex] = change in temperature = [tex](T_{final}-T_{initial})=23.2-100=76.8^oC[/tex]
Now put all the given values in the above formula, we get:
[tex]-312.48J=43.1g\times c\times 76.8^oC[/tex]
[tex]c=0.0944J/g^oC[/tex]
Thus, the specific heat of the metal is [tex]0.0944J/g^oC[/tex]