Respuesta :

Answer:

The value of Discriminant of the function is -92

It has ZERO distinct real number zeros.

Step-by-step explanation:

Given:

[tex]f(x)=4x^{2} +2x+6[/tex]

Which is a Quadratic Equation in the general form of

[tex]ax^{2}+bx+c=0[/tex]

where a,b and c are constants.So on comparing the given equation with general form we get,

[tex]a=4\\b=2\\c=6[/tex]

Formula for discriminant we have

[tex]Discriminant=b^{2}-4ac\\ =2^{2}-4(4)(6)\\ =4-96\\=-92[/tex]

now for zeros  we have

[tex]x=\frac{-b+\sqrt{b^{2-4ac} } }{2a} \\or\\x=\frac{-b-\sqrt{b^{2-4ac} } }{2a} \\[/tex]

on substituting these values we get

[tex]x=\frac{-2+\sqrt{-92} }{8}[/tex]

or

[tex]x=\frac{-2-\sqrt{-92} }{8}[/tex]

the term [tex]\sqrt{-92}[/tex] is imaginary

hence the zeros are not real number

Discriminant is -92

0 distinct real number zeros.