Respuesta :
Answer:
The value of Discriminant of the function is -92
It has ZERO distinct real number zeros.
Step-by-step explanation:
Given:
[tex]f(x)=4x^{2} +2x+6[/tex]
Which is a Quadratic Equation in the general form of
[tex]ax^{2}+bx+c=0[/tex]
where a,b and c are constants.So on comparing the given equation with general form we get,
[tex]a=4\\b=2\\c=6[/tex]
Formula for discriminant we have
[tex]Discriminant=b^{2}-4ac\\ =2^{2}-4(4)(6)\\ =4-96\\=-92[/tex]
now for zeros we have
[tex]x=\frac{-b+\sqrt{b^{2-4ac} } }{2a} \\or\\x=\frac{-b-\sqrt{b^{2-4ac} } }{2a} \\[/tex]
on substituting these values we get
[tex]x=\frac{-2+\sqrt{-92} }{8}[/tex]
or
[tex]x=\frac{-2-\sqrt{-92} }{8}[/tex]
the term [tex]\sqrt{-92}[/tex] is imaginary
hence the zeros are not real number