Respuesta :

Answer:

The tallest point of the tent is 9.22 ft.

Step-by-step explanation:

The slant sides of the tent are: 11 ft

The base of the tent is 12 ft apart.

Let the height of the tent = h ft

Now, if we assume the tent to be of  conical shape, the half of the tent forms a right angles triangle.

In this right angled triangle:

Slant Height of tent  = Hypotenuse of the triangle  = 11 ft

Height of tent  = Perpendicular of the triangle  = h

(Base /2)  of tent  = Base of the triangle  = 6 ft

Now, USING PYTHAGORAS THEOREM in a right triangle:

[tex](Base)^2  + (Perpendicular)^2  = (Hypotenuse)^2[/tex]

⇒[tex](6)^2  + h^2  = (11)^2\\\implies h^2  = 121 - 36  = 85\\or, h = \sqrt{85}  = 9.22[/tex]

⇒ h = 9.22 ft

Hence the tallest point of the tent is 9.22 ft.

ACCESS MORE