Answer:
a) 265.2 MPa
b)-172.8 MPa
c) -0.6541
d) 438 MPa
Explanation:
[tex]\sigma_{mean}= 46.2 MPa[/tex]
[tex]\sigma_{amplitude}= 219 MPa[/tex]
we know that
[tex]\sigma_{mean} = \frac{\sigma_{max}+\sigma_{min}}{2}[/tex]
[tex]46.2 = \frac{\sigma_{max}-\sigma_{min}}{2}[/tex]..............(1)
[tex]\sigma_{amplitude} = \frac{\sigma_{max}-\sigma_{min}}{2}[/tex]
[tex]219 = \frac{\sigma_{max}-\sigma_{min}}{2}[/tex].................(2)
solving equ (1) and equ (2) we get
[tex]\sigma_{max}[/tex] = 265.2 MPa
[tex]\sigma_{min}[/tex]= -172.8 MPa
stress ratio = [tex]\frac{\sigma_{min}}{\sigma_{max}}[/tex]
= [tex]\frac{-172.8}{265.2}[/tex] = -0.6515
now stress range = [tex]\sigma_{max}[/tex]-[tex]\sigma_{min}[/tex]
= 265.2 -(-172.8) = 438 MPa