Respuesta :
Answer:
- the fraction of the turbine work output used to drive the compressor is 50%
- the thermal efficiency is 29.6%
Explanation:
given information:
[tex]T_{1}[/tex] = 300 k
[tex]P_{1}[/tex] = 700 kPa
[tex]T_{2}[/tex] = 580 K
Qin = 950 kj/kg
efficiency, η = 86% = 0.86
Assume, Ideal gas specific heat capacities of air, [tex]C_{p}[/tex] = 1.005
k = 1.4
(a) the fraction of the turbine work output used to drive the compressor
Qin = [tex]C_{p}[/tex] ([tex]T_{3}[/tex] - [tex]T_{2}[/tex])
[tex]T_{3}[/tex] - [tex]T_{2}[/tex] = Qin / [tex]C_{p}[/tex]
[tex]T_{3}[/tex] = Qin / [tex]C_{p}[/tex] + [tex]T_{2}[/tex]
thus,
[tex]T_{3}[/tex] = [tex]\frac{950 kJ/kg}{1.005 kj/kgK} + 580 K
[tex]T_{3}[/tex] = 1525 K
[tex]\frac{T_{4} }{T_{3} }[/tex] = [tex](\frac{P_{4} }{P_{3} }) ^{k-1/k}[/tex]\
[tex]\frac{P_{4} }{P_{3} }[/tex] = [tex]\frac{P_{1} }{P_{2} }[/tex]
so,
[tex]\frac{T_{4} }{T_{3} }[/tex] = [tex](\frac{P_{1} }{P_{2} }) ^{k-1/k}[/tex]\
[tex]T_{4}[/tex] = [tex]T_{3}[/tex] [tex](\frac{P_{1} }{P_{2} }) ^{k-1/k}[/tex]\
= 1525 K [tex](\frac{100}{700} )^{1.4-1/1.4}[/tex]
= 875 K
[tex]W_{in}[/tex] = [tex]C_{p}[/tex] ([tex]T_{2}[/tex] - [tex]T_{1}[/tex])
= 1.005 kj/kgK (580 K - 300 K)
= 281.4 kJ/kg
[tex]W_{out}[/tex] = η [tex]C_{p}[/tex] ([tex]T_{3}[/tex] - [tex]T_{4}[/tex])
= 0.86 (1.005 kj/kgK) (1525 k - 875 K)
= 562.2 kJ/kg
therefore,
the fraction of turbine = [tex]\frac{W_{in} }{W_{out} }[/tex]
= [tex]\frac{281.4}{562.2}[/tex]
= 50%
(b) the thermal efficiency
η = ΔW/[tex]Q_{in}[/tex]
= ([tex]W_{out}[/tex] - [tex]W_{in}[/tex])/[tex]Q_{in}[/tex]
= [tex]\frac{562.2}{281.4}[/tex]/950
= 29.6%