Respuesta :
Answer: The value of [tex]K_p[/tex] is [tex]2.57\times 10^{3}[/tex] and the reaction must proceed in the forward direction.
Explanation:
The given chemical equation follows:
[tex]2NO(g)+Cl_2(g)\rightleftharpoons 2NOCl(g)[/tex]
Relation of [tex]K_p[/tex] with [tex]K_c[/tex] is given by the formula:
[tex]K_p=K_c(RT)^{\Delta ng}[/tex]
Where,
[tex]K_p[/tex] = equilibrium constant in terms of partial pressure = ?
[tex]K_c[/tex] = equilibrium constant in terms of concentration = [tex]6.5\times 10^{4}[/tex]
R = Gas constant = [tex]0.0821\text{ L atm }mol^{-1}K^{-1}[/tex]
T = temperature = [tex]35^oC=35+273=308K[/tex]
[tex]\Delta ng[/tex] = change in number of moles of gas particles = [tex]n_{products}-n_{reactants}=2-3=-1[/tex]
Putting values in above equation, we get:
[tex]K_p=6.5\times 10^{4}\times (0.0821\times 308)^{-1}\\\\K_p=2.57\times 10^{3}[/tex]
[tex]K_p[/tex] is the constant of a certain reaction at equilibrium while [tex]Q_p[/tex] is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
The expression of [tex]Q_p[/tex] for above equation follows:
[tex]Q_p=\frac{(p_{NOCl})^2}{(p_{NO})^2\times p_{Cl_2}}[/tex]
We are given:
[tex]p_{NOCl}=1.76atm\\p_{NO}=1.01atm\\p_{Cl_2}=0.42atm[/tex]
Putting values in above equation, we get:
[tex]Q_p=\frac{(1.76)^2}{(1.01)^2\times 0.42}=7.23[/tex]
We are given:
[tex]K_p=2.57\times 10^3[/tex]
There are 3 conditions:
- When [tex]K_{p}>Q_p[/tex]; the reaction is product favored.
- When [tex]K_{p}<Q_p[/tex]; the reaction is reactant favored.
- When [tex]K_{p}=Q_p[/tex]; the reaction is in equilibrium.
As, [tex]K_p>Q_p[/tex], the reaction will be favoring product side.
Hence, the value of [tex]K_p[/tex] is [tex]2.57\times 10^{3}[/tex] and the reaction must proceed in the forward direction.