Answer : The percent yield of the reaction is, 61.8 %
Solution : Given,
Mass of [tex]H_2[/tex] = 450 g
Molar mass of [tex]H_2[/tex] = 2 g/mole
Molar mass of [tex]NH_3[/tex] = 17 g/mole
First we have to calculate the moles of [tex]H_2[/tex].
[tex]\text{ Moles of }H_2=\frac{\text{ Mass of }H_2}{\text{ Molar mass of }H_2}=\frac{450g}{2g/mole}=225moles[/tex]
Now we have to calculate the moles of [tex]NH_3[/tex]
The balanced chemical reaction is,
[tex]N_2+3H_2\rightarrow 2NH_3[/tex]
From the balanced reaction, we conclude that
As, 3 mole of [tex]H_2[/tex] react to give 2 mole of [tex]NH_3[/tex]
So, 225 moles of [tex]H_2[/tex] react to give [tex]\frac{225}{3}\times 2=150[/tex] moles of [tex]NH_3[/tex]
Now we have to calculate the mass of [tex]NH_3[/tex]
[tex]\text{ Mass of }NH_3=\text{ Moles of }NH_3\times \text{ Molar mass of }NH_3[/tex]
[tex]\text{ Mass of }NH_3=(150moles)\times (17g/mole)=2550g[/tex]
Theoretical yield of [tex]NH_3[/tex] = 2550 g
Experimental yield of [tex]NH_3[/tex] = 1575 g
Now we have to calculate the percent yield of the reaction.
[tex]\% \text{ yield of }NH_3=\frac{\text{ Experimental yield of }NH_3}{\text{ Theretical yield of }NH_3}\times 100[/tex]
[tex]\% \text{ yield of }NH_3=\frac{1575g}{2550g}\times 100=61.8\%[/tex]
Therefore, the percent yield of the reaction is, 61.8 %