Answer:
Step-by-step explanation:
Given
at 9 am temperature of the body is [tex]90.3^{\circ}F[/tex]
1 hr later temperature [tex]89^{\circ}F[/tex]
Temperature of room [tex]T=68^{\circ}F[/tex]
According to newtons law
[tex]\frac{\mathrm{d} T}{\mathrm{d} t}=-k\left ( T-T_{room}\right )[/tex]
[tex]\frac{\mathrm{d} T}{\mathrm{d} t}=-k\left ( T-68\right )[/tex]
[tex]\frac{dT}{T-68}=-kdt[/tex]
Integrating
[tex]=\int \frac{dT}{T-68}=-kdt[/tex]
[tex]\ln |T-68|=-kt+c[/tex]
[tex]T-68=Ae^{-kt}[/tex]
Now at 9 am i.e. t=0,
[tex]90.3=A+68[/tex]
[tex]A=22.3[/tex]
At 10 am i.e. t=1 hr T=89
[tex]89-68=22.3e^{-k}[/tex]
[tex]e^{-k}=21[/tex]
[tex]k=0.06006 [/tex]
Temperature of Normal human body is [tex]T=98.6 ^{\circ}F[/tex]
[tex]98.6-68=e^{-0.06006t}[/tex]
[tex]30.6=e^{-0.06006t}[/tex]
Taking log both sides
[tex]t=-5.27 [/tex]
i.e. 5 hr and 16.2 min
i.e. victim murdered at 3 am and 43.8 min