A detective finds a victim of murder at 9 am. At that time, the temperature of the body is 90.3 degrees F. One hour later, the body temperature has cooled to 89 degrees F. _________ is the temperature of the room in which the body was found maintains a constant temperature of 68 degrees F.

Respuesta :

Answer:

Step-by-step explanation:

Given

at 9 am temperature of the body is [tex]90.3^{\circ}F[/tex]

1 hr later temperature [tex]89^{\circ}F[/tex]

Temperature of room [tex]T=68^{\circ}F[/tex]

According to newtons law

[tex]\frac{\mathrm{d} T}{\mathrm{d} t}=-k\left ( T-T_{room}\right )[/tex]

[tex]\frac{\mathrm{d} T}{\mathrm{d} t}=-k\left ( T-68\right )[/tex]

[tex]\frac{dT}{T-68}=-kdt[/tex]

Integrating

[tex]=\int \frac{dT}{T-68}=-kdt[/tex]

[tex]\ln |T-68|=-kt+c[/tex]

[tex]T-68=Ae^{-kt}[/tex]

Now at 9 am i.e. t=0,

[tex]90.3=A+68[/tex]

[tex]A=22.3[/tex]

At 10 am i.e. t=1 hr T=89

[tex]89-68=22.3e^{-k}[/tex]

[tex]e^{-k}=21[/tex]

[tex]k=0.06006 [/tex]

Temperature of Normal human body is [tex]T=98.6 ^{\circ}F[/tex]

[tex]98.6-68=e^{-0.06006t}[/tex]

[tex]30.6=e^{-0.06006t}[/tex]

Taking log both sides

[tex]t=-5.27 [/tex]

i.e. 5 hr and  16.2 min

i.e. victim murdered at 3 am and 43.8 min

RELAXING NOICE
Relax