Answer:
- the sample mean is 44
- the sample standard deviation is 12.35
Step-by-step explanation:
given information:
data, [tex]x_{i}[/tex] = 36.45, 67.90, 38.77, 42.18, 26.72, 50.77, 39.0, 50.23
the number of data, n = 8
the sample mean, xbar
xbar = ∑[tex]x_{i}[/tex]/n
= (36.45+67.90+38.77+42.18+26.72+50.77+39.0+50.23)/8
= 352.08/8
= 44
standard deviation, s
s = [tex]\sqrt{sum(x_{i} - xbar)^{2}/n-1}[/tex]
= [tex]\sqrt{(36.45-44)^{2}+(36.45-44)^{2}.........(39.00-44)^{2}+(50.23-44)^{2}/(8-1 )}[/tex]
= [tex]\sqrt{\frac{1067.12}{7} }[/tex]
= 12.35