To solve this problem it is necessary to apply Boyle's law in which it is specified that
[tex]P_1V_1 =P_2 V_2[/tex]
Where,
[tex]P_1[/tex] and [tex]V_1[/tex] are the initial pressure and volume values
[tex]P_2[/tex] and [tex]V_2[/tex] are the final pressure volume values
The final pressure here is the atmosphere, then
[tex]P_2 = 101325 \approx 1*10^5Pa[/tex]
[tex]h = 10m[/tex]
[tex]\rho_w = 1000kg/m^3[/tex]
[tex]V_1 = 3.0L[/tex]
Pressure at the water is given by,
[tex]P_1 = P_2 -\rho gh[/tex]
[tex]P_1 = 1*10^5 +1000*9.8*10 =198000Pa[/tex]
Using Boyle equation we have,
[tex]V_2 = \frac{P_1V_1}{P_2}[/tex]
[tex]V_2 = \frac{198000*3*10^5}{10^5}[/tex]
[tex]V_2 = 5.9L[/tex]
Therefore the volume of the lungs at the surface is 5.9L