Answer:
[tex]C = 46.891 \mu F[/tex]
Explanation:
Given data:
v = 220 rms
power factor = 0.65
P = 1250 W
New power factor is 0.9 lag
we knwo that
[tex]s = \frac{P}{P.F} < COS^{-1} 0.65[/tex]
[tex]S = \frac{1250}{0.65} < 49.45[/tex]
s = 1923.09 < 49.65^o
s = [1250 + 1461 j] vA
[tex]P.F new = cos [tan^{-1} \frac{Q_{new}}{P}][/tex]
solving for [tex]Q_{new}[/tex]
[tex]Q_{new} = P tan [cos^{-1} P.F new][/tex]
[tex]Q_{new} = 1250 [tan[cos^{-1}0.9]][/tex]
[tex]Q_{new} = 605.40 VARS[/tex]
[tex]Q_C = Q - Q_{new}[/tex]
[tex]Q_C = 1461 - 605.4 = 855.6 vars[/tex]
[tex]Q_C = \frac[v_{rms}^2}{xc} =v_{rms}^2 \omega C[/tex]
[tex]C = \frac{Q_C}{ v_{rms}^2 \omega} [/tex]
[tex]C = \frac{855.6}{220^2 \times 2\pi \times 60}[/tex]
[tex]C = 4..689 \times 10^{-5}[/tex] Faraday
[tex]C = 46.891 \mu F[/tex]