Answer:
the angular acceleration is 9.7 rad/[tex]s^{2}[/tex]
Explanation:
given information:
mass of thin rod, m = 3.2 kg
the length of the rod, L = 1.2
angle, θ = 38
to find the acceleration of the rod, we can use the torque's formula as below,
τ = Iα
where
τ = torque
I = inertia
σ = acceleration
moment inertia of this rod, I
I = [tex]\frac{1}{3} mL^{2}[/tex]
τ = F d, d = [tex]\frac{L}{2}[/tex]cosθ
τ = m g [tex]\frac{L}{2}[/tex]cosθ
now we can substitute the both equation,
τ = Iα
α = τ/I
= (m g [tex]\frac{L}{2}[/tex]cosθ)/([tex]\frac{1}{3} mL^{2}[/tex])
= 3gcosθ/2L
= 3 (9.8)cos 38°/(2 x 1.2)
= 9.7 rad/[tex]s^{2}[/tex]