Respuesta :
Answer:
a) ±0.73
b) ±3%
Step-by-step explanation:
One side of the right angle triangle is 12cm
The opposite angle(x) is 30 degree
Possible error = ±1degree
a) Let the hypotenus= h
h/12 = cosecx
h = 12cosecx
Differentiate h with respect to x
dh= -12cosecxcotcdx
The possible error in the angle measurement is dx
dx= ±1degree
Convert degree to radians
dx = ±1*π/180
dx = ± π/180
Put x and dx into dh
dh = -12cosec30cot30(±π/180)
= -12(2)(√3)(±π/180)
= -24√3(±π/180)
= ±24π√3/180
= ±0.73
b) To find the percentage error, recall that
dh = 12cosecx
dh = 12cosec30
dh = 12(2)
= 24
Percentage error =
(change in value/initial value) 100
Percentage error = (dh/h)100
= (±0.73/24)100
= ±0.030*100
= ±3%
Percentage error is simply the difference between the approximated and actual values, as a percentage of the actual value
- The error in the length of the hypotenuse is [tex]\mathbf{\pm 0.73}[/tex]
- The percentage error is 3%
The relationship between the hypotenuse, and the opposite side of a triangle is:
[tex]\mathbf{sin(\theta) = \frac{Opposite}{Hypotenuse}}[/tex]
So, we have:
[tex]\mathbf{sin(30) = \frac{12}{h}}[/tex]
Take inverse of both sides
[tex]\mathbf{csc(30) = \frac{h}{12}}[/tex]
Make h the subject
[tex]\mathbf{h = 12csc(30) }[/tex]
Differentiate
[tex]\mathbf{h' = -12csc(30)cot(30) x' }[/tex]
Express x' as radian
[tex]\mathbf{h' = -12csc(30)cot(30) \times \frac{\pm \pi}{180} }[/tex]
[tex]\mathbf{h' = -12\times 2 \times\sqrt 3 \times \frac{\pm \pi}{180} }[/tex]
[tex]\mathbf{h' = -\sqrt 3 \times \frac{\pm \pi}{7.5} }[/tex]
[tex]\mathbf{h' = \pm 0.73}[/tex]
Hence, the error in the length of the hypotenuse is [tex]\mathbf{\pm 0.73}[/tex]
(b) The percentage error
In (a), we have:
[tex]\mathbf{h = 12csc(30) }[/tex]
[tex]\mathbf{h = 12 \times 2}[/tex]
[tex]\mathbf{h = 24}[/tex]
So, the percentage error is:
[tex]\mathbf{\% Error = \frac{h'}{h} \times 100\%}[/tex]
This gives
[tex]\mathbf{\% Error = \frac{\pm 0.73}{24} \times 100\%}[/tex]
[tex]\mathbf{\% Error = \frac{\pm 73}{24} \%}[/tex]
[tex]\mathbf{\% Error = \pm 3 \%}[/tex]
Hence, the percentage error is 3%
Read more about percentage errors at:
https://brainly.com/question/6026605