Answer:
[tex]\frac{E_1}{E_2}= 4[/tex]
Explanation:
Capacitance C is given by
[tex]C= \frac{\epsilon_0A}{d}[/tex]
A= area of capacitor cross section
d= distance
therefore,
[tex]C_1= \frac{\epsilon_0A_1}{d_1}[/tex]
A_1= πR^2
d_1= d
[tex]C_2= \frac{\epsilon_0A_2}{d_2}[/tex]
A_= π(2R)^2
d_2 = 2d
[tex]q= \frac{\epsilon_0A_1}{d_1}V_1[/tex]
threfore
[tex]V_1= \frac{qd_1}{\epsilon_0A_1}[/tex]
and
[tex]V_2= \frac{qd_2}{\epsilon_0A_2}[/tex]
also we know that E= V/d
⇒[tex]\frac{E_1}{E_2}= \frac{V_1}{V_2}\times\frac{d_2}{d_1}[/tex]
⇒[tex]\frac{E_1}{E_2}= \frac{qd_1}{\epsilon_0A_1}\times\frac{\epsilon_0A_2}{qd_2}\times\frac{d_2}{d_1}[/tex]
= A_1/A_2= [tex]\frac{4R^2}{R^2}[/tex]=4
therefore,
[tex]\frac{E_1}{E_2}= 4[/tex]