Answer:
[tex]\lambda_{water} = 451.13\ nm[/tex]
Explanation:
given,
Thickness of oil = 200 nm
refractive index of oil (n₁)= 1.50
refractive index of water (n₂) = 1.33
[tex]n_{air} \lambda_{air} = n_{oil} \lambda_{oil}[/tex]
Wavelength of light in air medium
2t = k\lambda_{oil}
k = 1
[tex]2t = \dfrac{n_{air} \lambda_{air}}{n_{oil}}[/tex]
[tex]2t = \dfrac{n_{air} \lambda_{air}}{n_{oil}}[/tex]
[tex]\lambda_{air} = \dfrac{2t\ n_{oil}}{n_{air}}[/tex]
[tex]\lambda_{air} = \dfrac{2\times 200 \times 1.5}{1}[/tex]
[tex]\lambda_{air} = 600\ nm[/tex]
now,
wavelength of light in water
[tex]\lambda_{water} = \dfrac{n_{air} \lambda_{air}}{n_{water}}[/tex]
[tex]\lambda_{water} = \dfrac{1 \times 600 nm}{1.33}[/tex]
[tex]\lambda_{water} = 451.13\ nm[/tex]