Answer: c. z = 1.35; Reject the null hypothesis
Step-by-step explanation:
Let [tex]\mu[/tex] be the average life expectancy of its batteries.
As per given , we have
Null hypothesis : [tex]H_0 : \mu =135[/tex]
Alternative hypothesis : [tex]H_a : \mu >135[/tex]
Since [tex]H_a[/tex] is right-tailed and population standard deviation is also known, so we perform right-tailed z-test.
Test statistic : [tex]\dfrac{\overlien{x}-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]
where, n= sample size
[tex]\overlien{x}[/tex]= sample mean
[tex]\mu[/tex]= Population mean
[tex]\sigma[/tex]=population standard deviation
For [tex]n=42,\ \overline{x}=140\ \&\ \sigma=24[/tex], we have
[tex]z=\dfrac{140-135}{\dfrac{24}{\sqrt{42}}}=1.35015431217\approx1.35[/tex]
Critical one-tailed test value for 0.10 significance level :
[tex]z_{0.1}=1.28[/tex]
Decision : Since critical z value (1.28) < test statistic (1.35), so we reject the null hypothesis .
[When critical value is less than the test statistic value , we reject the null hypothesis .]