Answer:
7560 Joules
Explanation:
[tex]m_1[/tex] = Mass of first car = [tex]1.5\times 10^5\ kg[/tex]
[tex]m_2[/tex] = Mass of second car = [tex]2\times 10^5\ kg[/tex]
[tex]u_1[/tex] = Initial Velocity of first car = 0.3 m/s
[tex]u_2[/tex] = Initial Velocity of second car = -0.12 m/s
v = Velocity of combined mass
As linear momentum of the system is conserved
[tex]m_1u_1 + m_2u_2 =(m_1 + m_2)v\\\Rightarrow v=\frac{m_1u_1 + m_2u_2}{m_1 + m_2}\\\Rightarrow v=\frac{1.5\times 10^5\times 0.3 + 2\times 10^5\times -0.12}{1.5\times 10^5 + 2\times 10^5}\\\Rightarrow v=0.06\ m/s[/tex]
Energy lost is
[tex]\Delta E=\Delta E_i-\Delta E_f\\\Rightarrow \Delta=\frac{1}{2}(m_1u_1^2 + m_2u_2^2-(m_1+m_2)v^2)\\\Rightarrow \Delta=\frac{1}{2}(1.5\times 10^5\times 0.3^2 + 2\times 10^5\times (-0.12)^2-(1.5\times 10^5 + 2\times 10^5)\times 0.06^2)\\\Rightarrow \Delta=7560\ J[/tex]
The Energy lost in the collision is 7560 Joules