Answer with Explanation:
We are given that
Current in conductor=I=4.99 A (-x direction)
Magnetic field=B=[tex]3.72\hat{i}+8.72x^2\hat{j}mT=(3.72i+8.72x^2j)\times 10^{-3}[/tex]
(1mT=[tex]10^{-3} T[/tex])
x(in m) and B (in mT)
Length of conductor is given in negative x- direction
[tex]\vec{L}=-x\hat{i}[/tex]
[tex]dL=-dx\hat{i}[/tex]
Force on current carrying conductor is given by
[tex]F=I(L\times B)[/tex]
[tex]dF=I(dL\times B)[/tex]
Integrating on both sides then we get
[tex]\vec{F}=\int_{1.41}^{2.77}(4.99)(-dx\hat{i}\times (3.72\hat{i}+8.72x^2\hat{j}))\times 10^{-3}[/tex]
[tex]\vec{F}=-\int_{1.41}^{2.77}(4.99\times 10^{-3})\cdot 8.72(x^2\hat{k})dx[/tex] ([tex]i\times i=0, i\times j=k[/tex]
[tex]\vec{F}=-(4.99\times 10^{-3}\times 8.72)[\frac{x^3\hat{k}}{3}]^{2.77}_{1.41}[/tex]
[tex]\vec{F}=-\frac{(4.99\times 10^{-3}\cdot 8.72)}{3}((2.77)^3-(1.41)^3)\hat{k}[/tex]
[tex]\vec{F}=-0.268 \hat{k} N[/tex]
a. x- component of force=0
b.y- component of force=0
c.z- component of force=-0.268 N