Answer:
[tex]= 5.241 \times 10^{-5} m[/tex]
Explanation:
Given:
Length of cylinder is, L = 0.27 m
Outer radius of cylinder is, r_out = 1.12×10^{-2} m
Inner radius of cylinder is, r_in = 3.9×10^{-3} m
Mass of person, m = 60 kg
Young's modulus , Y = 9.4×10^9 N/m2
(a)
Compressional strain of humerous is,
[tex]Strain = \frac{Stress}{Young's\ modulus}[/tex]
[tex]\frac{\Delta L}{L_0} = \frac{\frac{F}{A}}{Y}[/tex]
[tex]= \frac{(mg)}{\pi(r_out^2 - r_in^2 )Y}[/tex]
[tex]= \frac{(60 kg)(9.8 m/s2 )}{(\pi)[( 1.12\times 10^{-2})^2 - (3.9\times 10^{-3} m)^2] (9.4\times 10^9 N/m2 )}[tex]
[tex]= 1.80\times 10^{-4} m[/tex]
(b) Let assume that humerous is compressed by ΔL
Since, strain = ΔL/L0
[tex](1.80 \times 10^{-4} m) = ΔL / 0.29 m[/tex]
Thus,
[tex]ΔL = (4.56 \times 10^{-4} m)(0.29 m)[/tex]
[tex]= 5.241 \times 10^{-5} m[/tex]