Answer:
[tex]x=83.71m[/tex]
Explanation:
The frictional force is given by:
[tex]F_f=\mu_s N(1)[/tex]
According to Newton's second law:
[tex]\sum F_y:N=W(2)\\\sum F_x:F_f=ma(3)[/tex]
Replacing (2) and (3) in (1):
[tex]ma=\mu_s W(4)[/tex]
To find the mass of the girl on the sled, we divide their weigh into the acceleration of gravity:
[tex]W=mg\\m=\frac{W}{g}(5)\\[/tex]
Replacing (5) in (4). Solving for a:
[tex]\frac{W}{g}a=\mu_s W\\a=\mu_s g[/tex]
Finally, using this kinematic equation, we calculate the distance traveled before coming to a rest ([tex]v_f=0[/tex]):
[tex]v_f^2=v_0^2-2ax\\x=\frac{v_f^2-v_0^2}{-2a}\\x=\frac{v_f^2-v_0^2}{-2\mu_s g}\\x=\frac{0^2-(7.9\frac{m}{s^2})^2}{-2(0.038)(9.81\frac{m}{s^2})}\\x=83.71m[/tex]