Answer:
(a) 9607 rpm
(b) 7308 rpm
Solution:
As per the question:
[tex]K_{T} = 1.657\ in-oz/A[/tex]
[tex]K_{E} = 1.23\ V/ krpm[/tex]
R = [tex]20\Omega[/tex]
[tex]V_{dd} = 12\V[/tex]
From the question:
V = [tex]D\times V_{dd}[/tex]
[tex]V = 12\times 0.25 = 3 V[/tex]
[tex]Constant\ Load, T = 0.15\ in-oz[/tex]
Duty cycle, D = 25% = 0.25
(a) Angular speed of the motor, [tex]\omega[/tex] can be calculated as:
EMF of the motor is given by:
E = V - IR
where
Also,
[tex]E = k_{E}\omega[/tex]
[tex]\omega = \frac{E}{K_{E}} = \frac{V - IR}{K_{E}}[/tex] (1)
Now,
Torque, T = [tex]K_{T}I[/tex]
Thus
[tex]I = \frac{T}{K_{T}}[/tex] (2)
From eqn (1) and (2)
[tex]\omega = \frac{E}{K_{E}} = \frac{V}{K_{E}} - \frac{TR}{K_{E}K_{T}}[/tex]
V = [tex]D\times V_{dd}[/tex]
V = [tex]0.25\times 12 = 3\ V[/tex]
[tex]\omega = \frac{3}{1.23} - \frac{0.15\times 20}{1.23\times 1.657} = 0.967\ krpm = 967\rpm[/tex]
(b) Speed of the motor when D = 90% = 0.9
V = [tex]D\times V_{dd}[/tex]
V = [tex]0.9\times 12 = 10.8\ V[/tex]
[tex]\omega = \frac{V}{K_{E}} - \frac{TR}{K_{E}K_{T}}[/tex]
[tex]\omega = \frac{10.8}{1.23} - \frac{0.15\times 20}{1.23\times 1.657} = 7.308\ krpm = 7308\ rpm[/tex]