Answer:
[tex]\dfrac{dV}{dt} = -0.466 m^3/s[/tex]
Explanation:
given,
P (in kilo pascals), volume V (in liters), temperature T (in kelvins)
P V = 8.31 T
Rate of increase the temperature = 0.1 K/s
temperature = 285 K
Pressure = 18 kPa
increasing at the rate of 0.07 k Pa/s
Rate at which volume is changing = ?
[tex]V = 8.31 \dfrac{T}{P}[/tex]
[tex]\dfrac{dV}{dt} = 8.31 \dfrac{P\dfrac{dT}{dt}-T\dfrac{dP}{dt}}{P^2}[/tex]
[tex]\dfrac{dV}{dt} = 8.31 \dfrac{18 \times 0.1-285\times 0.07}{18^2}[/tex]
[tex]\dfrac{dV}{dt} = 8.31 \dfrac{-18.15}{324}[/tex]
[tex]\dfrac{dV}{dt} = -0.466 m^3/s[/tex]