Respuesta :

Answer:

The length of AC to the nearest hundredth  = 8.06 units.

Step-by-step explanation:

In the given triangle ABC

CB = 7 units

AB = 4 units

Let AC = h units

Now, using PYTHAGORAS THEOREM in a right angled triangle:

[tex](BASE)^2  + (PERPENDICULAR)^2  = (HYPOTENUSE)^2[/tex]

⇒[tex](7)^2 + (4)^4 = h^2\\\implies h^2 = 49 + 16 = 65\\or, h = \sqrt(65) = 8.0622[/tex]

The hypotenuse AC of the given triangle is 8.0622 units.

Rounding off to the nearest hundredth, h  = 8.06 units.

Hence, the length of AC = 8.06 units.