Respuesta :
Answer:
[tex]P=214.7187\,W[/tex]
Explanation:
Given that:
Diameter of the solenoid, [tex]D=10\,cm=0.1\,m[/tex]
length of the solenoid, [tex]L=90\,cm=0.9\,m[/tex]
diameter of the wire, [tex]d=0.1\,cm=10^{-3}\,m[/tex]
magnetic field at the center of the solenoid, [tex]B=7.4\times 10^{-3}\,T[/tex]
Now we need the no. of turns incorporated in the length of 90 cm:
[tex]N=\frac{Length\,\,of\,\,solenoid}{diameter\,\,of\,\, wire}[/tex]
[tex]N=\frac{L}{d}[/tex]
[tex]N=\frac{0.9}{10^{-3}}[/tex]
[tex]N=900\,\,turns[/tex]
For solenoids we have:
[tex]B=\mu.n.I[/tex] ...............................(1)
where:
[tex]\mu=[/tex]permeability of the medium
n = no. of turns per unit length
I = current in the coil
So,
[tex]n=\frac{900}{0.9}[/tex]
[tex]n=1000\,turns\,.\,m^{-1}[/tex]
Now putting the respective values in the eq. (1)
[tex]7.4\times 10^{-3}=4\pi\times10^{-7}\times 1000\times I[/tex]
[tex]I=5.8887\,A[/tex]
- For copper we have resistivity:
- [tex]\rho=1.72\times 10^{-8}\, \Omega.m[/tex]
We know that resistance is given by:
[tex]R=\rho.\frac{l}{a}[/tex] .....................................(2)
where:
l = length of the conducting wire
a = cross sectional area of the conducting wire
Now we need the length (l) of the wire:
Circumference of the solenoid,
[tex]C=\pi.D[/tex]
[tex]C=0.1\pi\,m[/tex]
[tex]\therefore l=C\times N[/tex]
[tex]l=90\pi\,m[/tex]
&
Cross-sectional area of wire:
[tex]a=\pi.\frac{d^2}{4}[/tex]
[tex]a=\pi. \frac{(10^{-3})^2}{4}\,m^2[/tex]
Resistance from eq. (2):
[tex]R=1.72\times 10^{-8}\times \frac{90\pi}{\pi. \frac{(10^{-3})^2}{4}}[/tex]
[tex]R=6.192 \,\Omega[/tex]
- For power we have:
[tex]P=I^2.R[/tex]
[tex]P=5.8887^2 \times 6.192[/tex]
[tex]P=214.7187\,W[/tex]
The amount of power that must be delivered to the solenoid is equal to 214.81 Watts.
Given the following data:
- Diameter of solenoid = 10.0 cm to m = 0.10 m.
- Length of solenoid = 90.0 cm to m = 0.90 m.
- Diameter of wire = 0.100 cm to m = 0.0010 m.
- Magnetic field = 7.40 mT.
Scientific data:
- Permittivity of free space = [tex]4\pi \times 10^{-7}\; T.m/A[/tex]
- Resistivity of copper = [tex]1.72 \times 10^{-8}[/tex] Ωm.
How to calculate the amount of power (Watts).
First of all, we would determine the number of turns in the solenoid:
[tex]N = \frac{L_s}{d_w} \\\\N=\frac{0.9}{0.0010}[/tex]
N = 900 turns.
Also, we would determine the number of turns in the solenoid per unit length:
[tex]N=\frac{900}{0.9}[/tex]
N = 1000 turns/m.
Next, we would solve for the current by using this formula:
[tex]B=\mu NI\\\\I=\frac{B}{\mu N} \\\\I=\frac{7.40 \times 10^{-3}}{4\pi \times 10^{-7}\times 1000}[/tex]
Current, I = 5.89 A.
For the area of the wire, we have:
[tex]A =\pi r^2\\\\A = \pi \times 0.0005^2\\\\A= 2.5 \times 10^{-7}\;m^2[/tex]
For the lenght of the wire, we have:
[tex]Circumference = \pi D\\\\L=C \times N\\\\L = 0.1 \pi \times 900[/tex]
Length, L = 90π meters.
Next, we would determine the resistance of this wire:
[tex]R=\rho\frac{L}{A} \\\\R=\frac{1.72 \times 10^{-8} \; \times \;90\pi}{2.5 \times 10^{-7}}[/tex]
Resistance, R = 6.192 Ohms.
Now, we can calculate the power (in W) that must be delivered to the solenoid:
[tex]Power = I^2 R\\\\Power = 5.89^2 \times 6.192\\\\Power = 34.6921 \times 6.192[/tex]
Power = 214.81 Watts.
Read more on magnetic field here: https://brainly.com/question/7802337