Respuesta :
Answer:
1) [tex]\omega_f=10.5354\,rad.s^{-1}[/tex]
2) [tex]KE_i=53.0833\,J[/tex] & [tex]KE_f=97.0946\,J[/tex]
Explanation:
Given:
Mass of lead weight in each hand, [tex]m=6.4\,kg[/tex]
distance of weights while arms extend, [tex]r_i=0.84\,m[/tex]
initial angular speed of student holding the masses in extended arms, [tex]\omega_i=2.4\,rad.s^{-1}[/tex]
moment of inertial of student and stool, [tex]I_s=9.4\,kg.m^2[/tex]
final radius of lead weights, [tex]r_f=0.23\,m[/tex]
1.
Moment of inertia due to lead weights in the extended arms:
[tex]I_w_i=2\times m.r_i\,^2[/tex]
[tex]I_w_i=2\times 6.4\times 0.84^2[/tex]
[tex]I_w_i=9.0317\,kg.m^2[/tex]
∴Total moment of inertia initially
[tex]I_i=I_s+I_w_i[/tex]
[tex]I_i=9.4+9.0317[/tex]
[tex]I_i=18.4317\,kg.m^2[/tex]
Moment of inertia due to lead weights in the pulled-in arms:
[tex]I_w_f=2\times m.r_f\,^2[/tex]
[tex]I_w_f=2\times 6.4\times 0.23^2[/tex]
[tex]I_w_f=0.6771\,kg.m^2[/tex]
∴Total moment of inertia in final condition:
[tex]I_f=I_s+I_w_f[/tex]
[tex]I_f=9.4+0.6771[/tex]
[tex]I_f=10.0771\,kg.m^2[/tex]
- According to the law of conservation of angular momentum:
[tex]I_i.\omega_i=I_f.\omega_f[/tex]
[tex]18.4317\times 2.4=10.0771\times \omega_f[/tex]
[tex]\omega_f=4.3898\,rad.s^{-1}[/tex]
2.
Total Kinetic Energy before the student pulls his arm:
[tex]KE=\frac{1}{2} I_i.\omega_i\,^2[/tex]
[tex]KE=\frac{1}{2} \times 18.4317\times 2.4^2[/tex]
[tex]KE_i=53.0833\,J[/tex]
Total Kinetic Energy after the student pulls his arm:
[tex]KE=\frac{1}{2} I_f.\omega_f\,^2[/tex]
[tex]KE=\frac{1}{2} \times 10.0771\times 4.3898^2[/tex]
[tex]KE_f=97.0946\,J[/tex]
Answer:
(1) ω = 4.3 rad/sec
(2) 52.99 j and 93.4 j
Explanation:
from the question we are given the following:
mass of weight (m) = 6.4 kg
initial radius (ri) = 0.84 m
final radius (rf) = 0.23 m
angular speed (ω) = 2.4 rad/sec
moment of inertia of the student and stool (I) = 9.4 kgm^{2}
find the new angular speed and the kinetic energy of the rotating system before and after pulling the weight inwards.
(1) We can find the new angular momentum from the equation
initial angular momentum = final angular momentum
where
- angular momentum = (total inertia) x angular speed
- total inertia = inertia of student and stool + inertia of the masses
- inertia of the masses = mr^{2}
the equation now becomes
( I + 2m(ri)^{2}) x ω = ( I + m(rf)^{2}) x ω
(9.4 + (2 X 6.4 X 0.84^{2})) X 2.4 = ( 9.4 + (2 X 6.4 X 0.23^{2})) X ω
44.2 = 10.1 X ω
ω = 4.3 rad/sec
(2) kinetic energy = 0.5 x I x ω^{2}
kinetic energy before = 0.5 x 18.4 x 2.4^{2} = 52.99 j
kinetic energy after = 0.5 x 10.1 x 4.3^{2} = 93.4 j