Answer:
0.278 rad/s
Explanation:
d = Diameter of space station = 252 m
r = Radius = [tex]\frac{d}{2}=\frac{252}{2}\ m[/tex]
g = Acceleration due to gravity = 9.80 m/s²
[tex]\omega[/tex] = angular velocity
Here the centripetal acceleration and the acceleration due to gravity will balance each other
Centripetal acceleration is given by
[tex]a_c=r\omega^2[/tex]
[tex]a_c=g\\\Rightarrow r\omega^2=g\\\Rightarrow \frac{252}{2}\omega^2=9.8\\\Rightarrow \omega=\sqrt{\frac{9.8\times 2}{252}}\\\Rightarrow \omega=0.278\ rad/s[/tex]
The angular velocity required would be 0.278 rad/s