Could anyone help me
![Could anyone help me class=](https://us-static.z-dn.net/files/ddf/f8fdd14fbed0ff82ff8eb072d8d78888.png)
Answer:
1)[tex]m\angle 7 =65\°[/tex]
2)[tex]m\angle 4=115\°[/tex]
3)[tex]m\angle 6=115\°[/tex]
4)[tex]m\angle 1=65\°[/tex]
5)[tex]m\angle 16=60\°[/tex]
6)[tex]m\angle 18=60\°[/tex]
7)[tex]m\angle 21=120\°[/tex]
8)[tex]m\angle 10=55\°[/tex]
9)[tex]m\angle 11=125\°[/tex]
10) [tex]m\angle 12=55\°[/tex]
Step-by-step explanation:
Given:
[tex]e\parallel m[/tex] and [tex]p\ and\ q[/tex] are traversals.
[tex]m\angle 3=65\°[/tex]
[tex]m\angle 15 =120\°[/tex]
1) [tex]m\angle 7 = m\angle 3 =65\°[/tex] [corresponding angles]
2)[tex]m\angle 4= 180\°-m\angle 3 =180\°-65\°=115\°[/tex] [As [tex]m\angle 4+m\angle 3=180\°[/tex] forming a linear pair]
3)[tex]m\angle 6 = m\angle 4 =115\°[/tex] [alternate exterior angles]
4)[tex]m\angle 1 = m\angle 3 =65\°[/tex] [vertical angles]
5)[tex]m\angle 16= 180\°-m\angle 15 =180\°-120\°=60\°[/tex] [As [tex]m\angle 15+m\angle 16=180\°[/tex] forming a linear pair]
6)[tex]m\angle 18 = m\angle 16 =60\°[/tex] [alternate interior angles]
7)[tex]m\angle 21 = m\angle 15 =120\°[/tex] [alternate exterior angles]
[tex]m\angle 14 = m\angle 16 =60\°[/tex] [vertical angles]
[tex]m\angle 12+m\angle 7+m\angle 14=180\°[/tex] [Angle sum of triangle=180°]
[tex]m\angle 12=180\°-65\°-60\°=55\°[/tex][Plugging angle values in the above relation and solving for [tex]m\angle 12[/tex]
8) [tex]m\angle 10 = m\angle 12 =55\°[/tex] [Vertical angles]
9)[tex]m\angle 11= 180\°-m\angle 10 =180\°-55\°=125\°[/tex] [As [tex]m\angle 11+m\angle 10=180\°[/tex] forming a linear pair]
10) [tex]m\angle 12 = m\angle 10 =55\°[/tex] [Vertical angles]