[tex]\textbf{2500 }\dfrac{\textbf{kg}}{\textbf{s}^{\textbf{2}}}[/tex]
Explanation:
Natural length of a spring is [tex]0.5\text{ }m[/tex]. The spring is streched by [tex]0.02\text{ }m[/tex]. The resultant energy of the spring is [tex]0.5\text{ }J[/tex].
The potential energy of an ideal spring with spring constant [tex]k[/tex] and elongation [tex]x[/tex] is given by [tex]\dfrac{1}{2}kx^{2}[/tex].
So, in the current problem, the natural length of the spring is not required to find the spring constant [tex]k[/tex].
[tex]\text{Potential Energy in the spring = }\dfrac{1}{2}kx^{2}\\0.5\text{ }J\text{ }=\text{ }\dfrac{1}{2}k(0.02\text{ }m)^{2}\\k\times0.0004\text{ }m^{2}\text{ }=\text{ }1\text{ }J\text{ }=\text{ }1\text{ }kg\frac{m^{2}}{s^{2}}\\k\text{ }=\text{ }\dfrac{1\text{ }kg\dfrac{m^{2}}{s^{2}}}{0.0004\text{ }m^{2}}\text{ }=\text{ }2500\text{ }\frac{kg}{s^{2}}[/tex]
∴ The spring constant of the spring = [tex]2500\text{ }\frac{kg}{s^{2}}[/tex]