Answer:
[tex]2.02672\times 10^{-11}\ V[/tex]
Explanation:
f = Frequency = 75 Hz
B = Magnetic field = [tex]1\times 10^{-3}\ T[/tex]
d = Diameter of cell = [tex]7.4\ \mu m[/tex]
t = Time taken
[tex]\omega[/tex] = Angular frequency
The expression of emf is
[tex]E=NAB\omega sin\omega t[/tex]
Emf is maximum when [tex]sin\omega t=1[/tex] and N = number of turns = 1
[tex]E_m=AB\omega\\\Rightarrow E_m=\pi \left(\frac{d}{2}\right)^2 \times B \times 2\pi\times f\\\Rightarrow E_m=\pi \left(\frac{7.4\times 10^{-6}}{2}\right)^2\times 1\times 10^{-3}\times 2\pi\times 75\\\Rightarrow E_m=2.02672\times 10^{-11}\ V[/tex]
The maximum emf that can be generated around the perimeter of a cell in this field is [tex]2.02672\times 10^{-11}\ V[/tex]