Respuesta :
Answer:
Final speed is 900.06 m/s at [tex]0.2215^{\circ}[/tex]
Solution:
As per the question:
Mass of the first asteroid, m = [tex]15\times 10^{3}\kg[/tex]
Mass of the second asteroid, m' = [tex]20\times 10^{3}\kg[/tex]
Initial velocity of the first asteroid, v = 770 m/s
Initial velocity of the second asteroid, v' = 1020 m/s
Angle between the two initial velocities, [tex]\theta = 20^{\circ}[/tex]
Now,
Since, the velocities and hence momentum are vector quantities, then by the triangle law of vector addition of 2 vectors A and B, the resultant is given by:
[tex]\vec{R} = \sqrt{A^{2} + 2ABcos\theta + B^{2}}[/tex]
Thus applying vector addition and momentum conservation, the final velocity is given by:
[tex](m + m')v_{final} = \sqrt{(mv)^{2} + 2(mv)(m'v')cos20^{\circ} + (m'v')^{2}}[/tex] (1)
Now,
[tex](m +m')v_{final} = (35\times 10^{3})v_{final}[/tex]
[tex](mv)^{2} = (15\times 10^{3}\times 770)^{2} = 1.334\times 10^{14}[/tex]
[tex](m'v')^{2} = (20\times 10^{3}\times 1020)^{2} = 4.16\times 10^{14}[/tex]
[tex]2(mv)(m'v')cos20^{\circ} = 2(15\times 10^{3}\times 770)(20\times 10^{3}\times 1020)cos20^{\circ} = 4.43\times 10^{14}[/tex]
Now, substituting the suitable values in eqn (1), we get:
[tex]v_{final} = 900.06\ m/s[/tex]
Now, the direction for the two vectors is given by:
[tex]\theta = sin^{- 1} \frac{m'v'sin20^{\circ}}{(m + m')v_{final}}[/tex]
[tex]\theta = sin^{- 1} \frac{20\times 10^{3}\times 1020sin20^{\circ}}{(35\times 10^{3})\times 900.06} = 0.2215^{\circ}[/tex]