Respuesta :
To solve the problem it is necessary to take into account the concepts related to the Reynolds Number and the Force of drag on the bodies subjected to a Fluid.
The Reynolds number for the Prototype and the Model must therefore be preserved,
[tex]Re_p = Re_m[/tex]
[tex]\frac{V_mL_m}{\upsilon_m} = \frac{V_pL_p}{\upsilon_p}[/tex]
Re-arrange for the speed of the model we have,
[tex]V_m = \frac{L_p}{L_m}\frac{\upsilon_m}{\upsilon_p}V_p[/tex]
Our values at 20°C would be given of the table of Physical Properties of water where
[tex]\upsilon_m=1*10^{-6}m^2/s[/tex]
[tex]\rho_m = 998kg/m^3[/tex]
While for the values previous given we have
[tex]V_p = 2m/s[/tex]
[tex]\upsilon_m=1*10^{-6}m^2/s[/tex]
[tex]\upsilon_p=1.4*10^{-6}[/tex]
And we have a Ratio between the prototype and the model of 16:1, then
[tex]V_m = \frac{L_p}{L_m}\frac{\upsilon_m}{\upsilon_p}V_p[/tex]
[tex]V_m = \frac{16}{1}\frac{1*10^{-6}}{1.4*10^{-6}}*2[/tex]
[tex]V_m = 22.857m/s[/tex]
PART B) To calculate the ratio of the drag force now we have to,
[tex]\frac{F_{DM}}{F_{DP}} = \frac{L_m}{L_p}^2\frac{V_m}{V_p}^2\frac{\rho_m}{\rho_p}[/tex]
Replacing with our values we have,
[tex]\frac{F_{DM}}{F_{DP}} = \frac{1}{16}^2\frac{22.857}{2}^2\frac{998}{1015}[/tex]
[tex]\frac{F_{DM}}{F_{DP}} = 0.5016[/tex]
Therefore the ratio of drag force for prototype and model is 0.5016