Answer:
The maximum emf that can be generated around the perimeter of a cell in this field is [tex]1.5732*10^{-11}V[/tex]
Explanation:
To solve this problem it is necessary to apply the concepts on maximum electromotive force.
For definition we know that
[tex]\epsilon_{max} = NBA\omega[/tex]
Where,
N= Number of turns of the coil
B = Magnetic field
[tex]\omega =[/tex] Angular velocity
A = Cross-sectional Area
Angular velocity according kinematics equations is:
[tex]\omega = 2\pi f[/tex]
[tex]\omega = 2\pi*61.5[/tex]
[tex]\omega =123\pi rad/s[/tex]
Replacing at the equation our values given we have that
[tex]\epsilon_{max} = NBA\omega[/tex]
[tex]\epsilon_{max} = NB(\pi (\frac{d}{2})^2)\omega[/tex]
[tex]\epsilon_{max} = (1)(1*10^{-3})(\pi (\frac{7.2*10^{-6}}{2})^2)(123\pi)[/tex]
[tex]\epsilon_{max} = 1.5732*10^{-11}V[/tex]
Therefore the maximum emf that can be generated around the perimeter of a cell in this field is [tex]1.5732*10^{-11}V[/tex]