Respuesta :

Answer:

The above expression is simplified as [tex](\frac{2n^3}{3n^4} )^2   = \frac{4}{9n^2}[/tex]

Step-by-step explanation:

Here, the given expression is:

[tex](\frac{2n^3}{3n^4} )^2[/tex]

Laws of Exponents:

1. [tex]\frac{x^m}{x^n}    = x^{(m-n)}[/tex]

2. [tex](\frac{x}{y} )^k  = \frac{x^k}{y^k}[/tex]

3.[tex]x^m. x^n  = x^{m +n}[/tex]

using the above results, we get:

[tex](\frac{2n^3}{3n^4} )^2  = (\frac{2n^{3-4}}{3} )^2\\=(\frac{2n^{(-1)}}{3}) ^2\\=(\frac{2}{3n} )^2  = (\frac{2^2}{(3n)^2} )\\=\frac{4}{9n^2} \\\implies(\frac{2n^3}{3n^4} )^2   = \frac{4}{9n^2}[/tex]

Hence, the above expression is simplified as [tex](\frac{2n^3}{3n^4} )^2   = \frac{4}{9n^2}[/tex]