Answer
given,
angle of pushing =19°
frequency = 10 rpm
time = 9 sec
radius of disk = 2.3 m
mass of merry-go-round = 750 Kg
Rachel mass = m₁ = 48 Kg
Tayler mass = m₂ = 46 Kg
moment of inertial
[tex]I = \dfrac{1}{2}Mr^2 + (m_1+m_2) r^2[/tex]
[tex]I = \dfrac{1}{2}\times 750 \times 2.3^2 + (48+46) 2.3^2[/tex]
I = 2481.01 Kg.m²
ω = 10 rpm = [tex]10 \times \dfrac{2\pi}{60}[/tex]
ω = 1.05 rad/s
ω₀ = 0
[tex]\alpha= \dfrac{\omega-\omega_0}{t}[/tex]
[tex]\alpha= \dfrac{1.05-0}{9}[/tex]
α = 0.117 rad/s²
we know,
T = I α
F cos 16° = 2481.01 x 0.117
F = 301.98 N
Work done =
=[tex]\dfrac{1}{2}I\omega^2[/tex]
=[tex]\dfrac{1}{2}\times 2481.01\times 1.05^2[/tex]
W =1367.66 J