Answer:
(a) Frictional force = 44.145 N
(b) Acceleration = -2.943 m/s²
(c) Distance covered = 1.529 m
Explanation:
Given:
Mass of the box is, [tex]m=15\ kg[/tex]
Coefficient of friction is, [tex]\mu =0.30[/tex]
Acceleration due to gravity is, [tex]g=9.81\ m/s^2[/tex]
Normal force acting on the box is, [tex]N=mg=(15)(9.81) = 147.15\ N[/tex]
(a)
Frictional force is given as:
[tex]f=\mu N=0.30\times 147.15=44.145\ N[/tex]
Therefore, the frictional force is 44.145 N.
(b)
The acceleration of the box is given using Newton's second law as:
[tex]a=-\frac{f}{m}=-\frac{44.145}{15}=-2.943\ m/s^2[/tex]
Therefore, the acceleration of the box is -2.943 m/s².
(c)
Initial velocity is, [tex]u=3.0\ m/s[/tex]
Final velocity is, [tex]v=0\ m/s[/tex]
Acceleration of the box is, [tex]a=-2.943\ m/s^2[/tex]
The displacement of the box can be determined using equation of motion as:
[tex]v^2=u^2+2ad\\0=3^2+2\times (-2.943)d\\0=9-5.886d\\5.886d=9\\d=\frac{9}{5.886}=1.529\ m[/tex]
Therefore, the displacement of the box is 1.529 m.